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Abstract—Identifying essential proteins is of vital importance 
for disease study and drug design. A lot of topology-based and 
machine learning-based methods have been proposed to identify 
essential proteins. However, traditional topology-based methods 
only focus on explicitly described characteristics of network 
topology and are not expressive enough to capture the complexity 
of connectivity patterns observed in biological networks. In 
addition, identification of essential proteins is an imbalanced 
learning problem due to the fact that there are significantly more 
non-essential proteins than the essential ones. Few machine 
learning-based methods take the imbalanced nature into 
consideration. We propose a new deep learning framework, to 
tackle the above limitations. In our model, we make use of the 
node2vec technique to learn topological features from protein-
protein interaction (PPI) network without manual feature 
selection. To overcome the problem of the imbalanced nature of 
dataset, we use a sampling method, which does not bias to the 
majority and minority classes in a training step and tend to make 
full use of all samples during the whole training process. To 
evaluate the performance of our model, we test it on S. cerevisiae 
dataset. Our results show that it greatly outperforms topology-
based methods including DC, BC, CC, EC, NC, LAC, PeC and 
WDC. It also outperforms machine learning-based methods 
including support vector machine (SVM), decision tree, random 
forest and Adaboost.  
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I. INTRODUCTION 

Proteins are products of gene expressions, which perform 
many functions in organisms and play important roles in 
various biological activities [1]. Essential proteins are 
indispensable in cellular life because they normally ensure the 
functions of cellular life [2]. An organism cannot survive or 
develop if one of the essential proteins has been removed [3]. 
Identification of essential proteins is one of the focuses in 
bioinformatics research for the following reasons: 1) 
Determination of essential proteins helps to understand the 
minimum requirements of the survival and evolution of a cell; 
and 2) Essential proteins are potential targets of new antibiotics 

drug. Essential proteins can be identified by biological 
experiments such as single gene knockout [4], conditional 
knockout [5], and RNA interference [6]; however, the 
experiments are expensive and time-consuming. Considering 
these experimental constraints, it is urgent to develop an 
accurate computational approach for identifying essential 
proteins. 

Previous studies have shown that the topological properties 
of proteins in protein-protein interaction (PPI) network have a 
strong relationship with gene essentiality [7]. Based on the 
topological features in PPI networks, various centrality 
methods have been proposed and used for identifying essential 
proteins [8]. These centrality methods include Degree 
Centrality (DC) [9], Betweenness Centrality (BC) [10], 
Closeness Centrality (CC) [11], Subgragh Centrality (SC) [12], 
Eigenvector Centrality (EC) [13], Information Centrality (IC) 
[14] and Edge Clustering Coefficient Centrality (NC) [15]. 
Additionally, some biological information including gene 
expression profiles [16-18], subcellular localization [19], and 
protein domains [20] have been incorporated to predict 
essential proteins.  

With the development of proteomics, more proteins data 
have been obtained with the information of whether they are 
essential or not being known. The above mentioned centrality 
methods do not make use of the label information of proteins 
although they have achieved reasonable results. Recent years, 
machine learning methods including support vector machine 
(SVM) [21] [22], decision tree [23] [24], Naive Bayes [25] 
[26], ensemble method [27]  [28], and genetic algorithms [29] 
have been widely used for identifying essential proteins. 

In the previous studies, however, there are three major 
limitations. First, for topology-based methods, single 
topological feature cannot characterize the comprehensive 
topological information of PPI networks. A PPI network 
usually has thousands of vertices and tens of thousands edges. 
A single centrality index of a node is just a real number, which 
is difficult to characterize the topological features of a complex 
network. Second, for machine learning-based methods, there is 
lack of a computational framework to automatically select 
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topological features from various proposed topology-based 
methods. The commonly used approach for the selection 
topological feature is to select the most appropriate topological 
features according to the results of statistical methods. As a 
result, it is difficult to explain why these features were chosen 
and what roles they play in the classification. Thirdly, few 
machine learning-based researches have taken into 
consideration of the imbalanced nature of data distribution. 
Data imbalance means an uneven distribution of samples 
between different classes. The imbalanced nature of dataset 
usually tends to bias towards the majority class and leads to a 
poor performance [30].  

To tackle the above limitations, we employ a network 
representation learning technique, which is a newly developed 
network feature extraction technique. Network representation 
learning aims to encode network topology into a low-
dimensional space. It can automatically learn a low-
dimensional dense vector for each vertex to represent the 
topological information of a network without manual topology-
based features selection. In addition, the learned 
representations encode semantic and topological roles of 
vertices in the network, which can be used to measure 
topological similarity between vertices. Through network 
representation learning, the learned dense vector has a richer 
representation of PPI network than a single centrality index. 
Then we apply a sampling method to overcome the challenge 
of the imbalanced dataset. The proposed sampling method 
utilizes a balanced subset from the raw dataset for training in 
each training step. After many training steps, in high 
probability, it can make full use of all samples of the raw 
dataset to train the model. 

In addition to overcoming the above limitations, our deep 
learning framework also offers other attractive advantages. We 
transform gene expression profiles into an image to better 
extract its patterns. In such a way, the effective machine 
learning techniques for image classification can be used to 
identify essential proteins. As we know, multi-scale 
convolutional neural network is a powerful deep learning 
architecture which has been widely used in image 

classification. Inspired by their success in image classification, 
we use multi-scale convolutional neural network to extract the 
patterns of gene expression profiles [31].  

We carry out our experiments on S. cerevisiae data. 
Accuracy, precision, recall, F-measure and AUC (Area Under 
receiver operating characteristic Curve) obtained by our model 
are 0.823, 0.582, 0.518, 0.548 and 0.807, respectively. Our 
experimental results show that our method yields better 
performance than topology-based methods including DC, BC, 
CC, EC, NC, LAC [32], PeC [16], and WDC [17]. It also 
outperforms the commonly used machine learning methods of 
SVM, decision tree, random forest (RF) and Adaboost.   

 

II. MATERIALS AND METHODS 

A. Overview of our model  
Our deep learning framework for identifying essential 

protein is illustrated in Fig.1, which consists of feature 
extraction and classification part. The inputs to our deep 
learning network are two types of biological data, gene 
expression data and PPI network. The feature extraction part is 
responsible for extracting features and patterns from different 
biological data. We treat the gene expression data as an image 
and use multi-scale convolutional layer and pooling layer to 
extract features. For the PPI network, we apply a network 
representation learning technique called node2vec to learn a 
dense vector for each vertex to capture the topological 
information of a network. After feature extraction, the output 
vectors are concatenated together as the input for classification. 
The classification part consists of a fully connected hidden 
layer and an output layer. The fully connected layer with 
softmax activation function is used for preliminary processing. 
On top of the fully connected layer, an output layer performs 
the essential protein prediction task. Considering the 
imbalanced nature of the essential protein dataset, we apply a 
sampling method to train the parameters of deep learning 
model.  

Fig. 1. An overview of our proposed deep learning framework for identifying essential proteins. 
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B. Network representation learning  
Network topological feature extraction plays an important 

role in the study of identifying essential protein. Various 
network representation learning techniques have been proposed 
in recent years. Node2vec [33], a deep learning method, learns 
vector representations of vertexes based on local network 
information. It utilizes random walk algorithm to obtain each 
vertex’s sequence. Then the Skip-Gram model [34] is 
employed to predict surrounding context words given a center 
vertex by maximizing the co-occurrence likelihood between a 
target vertex and its context vertices. During learning 
iterations, the learned vectors are successively updated using 
the Skip-Gram model. After completing the training step, the 
outputs of node2vec are dense vectors for all vertices in the 
network. These dense vectors are considered to be semantic 
and topological representation of the network. 

C. Sampling method 
 Data imbalance, an uneven distribution of instances 

between different classes, is a very common phenomenon in 
real-world data sets. There have been a lot of studies on how to 
solve the imbalanced data learning problem including sampling 
methods, cost-sensitive learning methods, kernel-based 
learning methods, and active learning methods [30]. Sampling 
method is widely used and very effective among these 
methods. However, traditional sampling methods including 
random undersampling, random oversampling, and SMOTE 
[35] are not suitable for direct use in our deep learning 
framework. 

To improve the prediction performance, we apply a 
sampling method to our model. We denote M as the number of 
minority class instances (essential proteins) and N as the 
number of majority class instances (non-essential proteins) in 
the training dataset where M<<N. M instances were sampled 
from the majority class at each epoch, then we combine the M 
instances in the majority class and all instances in the minority 
class together to train our deep learning model. This process is 
carried out k times to train our model. Such a sampling method 
ensures that each instance in the majority class can be picked 

and trained with equal number of two class instances to avoid 
overfitting. Fig. 2 illustrates the sampling method. 

D. Multi-scale convolutional neural network 
Convolutional neural network (CNN) is a class of deep 

neural networks that have been successfully applied to 
computer vision [36]. CNNs utilize layers with convolving 
filters that are applied to local features [37], which allows CNN 
layers to automatically learn low-level features from input data. 
Multi-scale CNN uses different sizes of kernels to extract local 
features, which has been showed to be an efficient method to 
combine different features for classification [38]. 

Inspired by the success of multi-scale CNN [39], we treat a 
gene expression profile as an image in order to better extract 
gene expression profiles features. A gene expression profile 
has three successive metabolic cycles. There are 12 time points 
in a cycle, and the time interval between two time points is 25 
minutes. Specifically, we transform a one-dimensional vector 
with 36 real values into an image with 1 channel * 3 rows * 12 
columns (as illustrated in Figure 1). Then we use multi-scale 
CNNs to extract local information and to explore the 
relationship between cycles. 

E. Assessment metrics 
Essential protein dataset is an imbalanced dataset. To 

properly evaluate the performance of our model and the other 
algorithms in identifying essential proteins, we use some 
assessment metrics for imbalanced learning.  

In the following, we first explain four frequently used terms 
TP, TN, FP, and FN. TP and TN represent the number of 
samples of the minority and majority class which are classified 
correctly, respectively, and FP and FN represent the number of 
samples of the minority and majority class which are 
misclassified, respectively. Accuracy is defined as:    
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    Precision, recall, and F-measure are defined as: 
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Fig. 2. An illustration of sampling method. In the sampling process, we used 80% samples for training and 20% samples for testing. 
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where � is a coefficient to adjust the relationship between 
precision and recall. In this study, we adopt �=1. 

AUC and average precision (AP) score are used in our study 
for evaluation.  

 

III. DATA SOURCES 
In this study we use multi-source datasets, including PPI 

network dataset, essential protein dataset, gene expression 
dataset. PPI network dataset of S. cerevisiae is the most widely 
used dataset in the study of identifying essential proteins. This 
dataset is downloaded from BioGRID database. After 
removing repeated interaction and self-interactions, the 
processed dataset contains 5616 proteins and 52833 
interactions.  

Essential protein dataset is selected from the following 
databases: MIPS [40], SGD [41], DEG [2], and SGDP, which 
contains 1199 essential proteins. 

Gene expression dataset is retrieved from Tu et al., 2005 
[42], which contain 6776 gene products (proteins) and 36 
samples in total. This dataset has three successive metabolic 
cycles with 12 time points in a cycle and, the time interval 
between two time consecutive points is 25 minutes. 

 

IV. EXPERIMENTAL RESULTS  

A. Comparison with results of topology-based methods 

To evaluate the performance of our deep learning 
framework, we compare our model with existing topology-
based methods, DC, BC, CC, EC, NC and LAC, which have 
been widely used for comparison in essential protein 
prediction. Additionally, we also compare our model with PeC 
and WDC which are based on the integration of PPI and gene 
expression data. In this work, we select the top 1185 proteins 
(our processed PPI network has 1185 essential proteins) ranked 
by DC, BC, CC, EC, NC, LAC, PeC, and WDC as their 
predicted essential proteins. The rest of proteins are regarded as 
non-essential proteins. According to known labels of essential 
proteins and non-essential proteins, we obtain a confusion 
matrix which is used to calculate precision, recall, F-measure 
and accuracy of each method. In Table 1 we compare our 
predicted accuracy, precision, recall, and F-measure with those 
of DC, BC, CC, EC, NC, LAC, PeC, and WDC. By inspecting 
Table 1, one can find that all assessment metrics obtained by 
our deep learning method significantly outperform DC, BC, 
CC, EC, NC, LAC, PeC, and WDC. Our model obtains the 
values of accuracy, F-measure, precision and recall being 
0.823, 0.548, 0.582 and 0.518, respectively, which are better 
than other topology-based methods including DC (0.740, 
0.436, 0.430 and 0.433), BC (0.722, 0.398, 0.393 and 0.395), 
CC (0.665, 0.262, 0.260, and 0.261), EC (0.727, 0.408, 0.401, 
and 0.404), NC (0.752, 0.468, 0.464 and 0.466), LAC (0.745, 
0.467, 0.409 and 0.436), PeC (0.747, 0.438, 0.430 and 0.434), 
and WDC (0.742, 0.455, 0.459, and 0.457). The experimental 

results show that our model is not only superior to those simple 
topology-based methods including DC, BC, CC, EC, NC, and 
LAC, but also outperforms those methods based on the 
integration of PPI and gene expression data. 

 

TABLE . COMPARISON OF PERFORMANCES BETWEEN METHODS 

OF OUR MODEL, DC, BC, CC, EC, NC, LAC, PEC AND WDC. 

 

B. Comparison with results of other machine learning 
algorithms 
A lot of machine learning algorithms have been employed 

for identifying essential proteins. The most commonly used 
algorithms are SVM, decision tree and ensemble learning-
based methods. Here, we compare our deep learning 
framework with these algorithms. All of these machine 
learning algorithms are implemented by using scikit-learn 
python package. To ensure a fair comparison, we use gene 
expression data and node vectors which are generated by 
node2vec and then concatenate them into a vector as the input 
of these machine learning algorithms.  

 

TABLE . COMPARISON OF PERFORMANCE BETWEEN OUR MODEL  

AND OTHER MACHINE LEARNING ALGORITHMS. 

 

In Table 2 we compare the performance results of our 
model with other machine learning algorithms. From the 
results presented in Table 2, we conclude that our model 
achieves the state-of-the-art results among these methods. Our 
model obtains F-measure and AUC with values of 0.55 and 
0.81, respectively, which are better than SVM (0.21 and 0.72), 
decision tree (0.35 and 0.58), random forest (0.27 and 0.70), 

Models Accuracy Precision Recall F-measure 

DC 0.740 0.436 0.430 0.433 

BC 0.722 0.398 0.393 0.395 

CC 0.665 0.262 0.260 0.261 

EC 0.727 0.408 0.401 0.404 

NC 0.752 0.468 0.464 0.466 

LAC 0.745 0.467 0.409 0.436 

PeC 0.747 0.438 0.430 0.434 

WDC 0.742 0.455 0.459 0.457 

Our model 0.823 0.582 0.518 0.548 

Algorithms Accuracy Precision Recall F-measure AUC 

SVM  0.809 0.71 0.12 0.21 0.72 

DT 0.698 0.31 0.39 0.35 0.58 

RF  0.809 0.63 0.17 0.27 0.70 

Adaboost  0.805 0.54 0.34 0.42 0.73 

Our model 0.823 0.58 0.52 0.55 0.81 
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Adaboost (0.42 and 0.73). Nevertheless, for individual metrics 
including accuracy, precision, or recall, our model does not 
show the highest values. For example, SVM has the highest 
precision value (0.71), but this is achieved by significantly 
sacrificing recall (0.12). Anyway, compared to the other 
machine learning methods, our model exhibits the best overall 
performance. 

 

V. CONCLUSIONS 
We propose a deep learning framework for identifying 

essential proteins. Our model employs node2vec technique to 
automatically learn semantic and topological features from PPI 
network without manual features selection. The technique of 
node2vec maps vertices to a low-dimensional space and 
obtains dense vectors, which have richer representation of PPI 
network than traditional centrality indexes. Hence our method 
captures comprehensive topological features of PPI network. 
We further apply a sampling method to solve the problem of 
imbalanced nature of data distribution. It utilizes a balanced 
subset from raw training dataset for training at each time and 
thus the classifier does not bias to any class in a training step. 
By training enough times, it makes use of all non-essential 
protein samples in raw training dataset. We use S. cerevisiae 
dataset to evaluate the performance of our model. Comparison 
with widely used methods of DC, BC, CC, EC, NC, LAC, PeC, 
and WDC demonstrates that our model greatly outperforms 
existing topology-based methods. Our model also outperforms 
machine learning methods such as SVM, decision tree, random 
forest, and Adaboost. 

 

ACKNOWLEDGMENT  
This work was supported in part by the National 

Natural Science Foundation of China under Grants (No. 
61832019, No. 61622213 and No. 61728211), the 111 Project 
(No.B18059) and the Fundamental Research Funds for the 
Central Universities of Central South University 
(No.2018zzts563). 

REFERENCES 
[1] J. I. Glass, C. A. Hutchison, H. O. Smith, and J. C. Venter, "A 

systems biology tour de force for a near minimal bacterium," 
Molecular systems biology, vol. 5, p. 330, 2009. 

[2] R. Zhang and Y. Lin, "DEG 5.0, a database of essential genes in 
both prokaryotes and eukaryotes," Nucleic acids research, vol. 37, 
pp. D455-D458, 2008. 

[3] A. E. Clatworthy, E. Pierson, and D. T. Hung, "Targeting virulence: 
a new paradigm for antimicrobial therapy," Nature chemical 
biology, vol. 3, p. 541, 2007. 

[4] G. Giaever, A. M. Chu, L. Ni, C. Connelly, L. Riles, S. Veronneau, 
et al., "Functional profiling of the Saccharomyces cerevisiae 
genome," nature, vol. 418, p. 387, 2002. 

[5] L. M. Cullen and G. M. Arndt, "Genome wide screening for gene 
function using RNAi in mammalian cells," Immunology & Cell 
Biology, vol. 83, pp. 217-223, 2005. 

[6] T. Roemer, B. Jiang, J. Davison, T. Ketela, K. Veillette, A. Breton, 
et al., "Large scale essential gene identification in Candida 
albicans and applications to antifungal drug discovery," Molecular 
microbiology, vol. 50, pp. 167-181, 2003. 

[7] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, "Lethality 
and centrality in protein networks," Nature, vol. 411, p. 41, 2001. 

[8] X. Peng, J. Wang, W. Peng, F.-X. Wu, and Y. Pan, "Protein–protein 
interactions: detection, reliability assessment and applications," 
Briefings in bioinformatics, vol. 18, pp. 798-819, 2016. 

[9] M. W. Hahn and A. D. Kern, "Comparative genomics of centrality 
and essentiality in three eukaryotic protein-interaction networks," 
Molecular biology and evolution, vol. 22, pp. 803-806, 2004. 

[10] M. P. Joy, A. Brock, D. E. Ingber, and S. Huang, "High-
betweenness proteins in the yeast protein interaction network," 
BioMed Research International, vol. 2005, pp. 96-103, 2005. 

[11] S. Wuchty and P. F. Stadler, "Centers of complex networks," 
Journal of Theoretical Biology, vol. 223, pp. 45-53, 2003. 

[12] E. Estrada and J. A. Rodriguez-Velazquez, "Subgraph centrality in 
complex networks," Physical Review E, vol. 71, p. 056103, 2005. 

[13] P. Bonacich, "Power and centrality: A family of measures," 
American journal of sociology, vol. 92, pp. 1170-1182, 1987. 

[14] K. Stephenson and M. Zelen, "Rethinking centrality: Methods and 
examples," Social networks, vol. 11, pp. 1-37, 1989. 

[15] J. Wang, M. Li, H. Wang, and Y. Pan, "Identification of essential 
proteins based on edge clustering coefficient," IEEE/ACM 
Transactions on Computational Biology and Bioinformatics 
(TCBB), vol. 9, pp. 1070-1080, 2012. 

[16] M. Li, H. Zhang, J.-x. Wang, and Y. Pan, "A new essential protein 
discovery method based on the integration of protein-protein 
interaction and gene expression data," BMC systems biology, vol. 6, 
p. 15, 2012. 

[17] X. Tang, J. Wang, J. Zhong, and Y. Pan, "Predicting essential 
proteins based on weighted degree centrality," IEEE/ACM 
Transactions on Computational Biology and Bioinformatics 
(TCBB), vol. 11, pp. 407-418, 2014. 

[18] M. Li, R. Zheng, H. Zhang, J. Wang, and Y. Pan, "Effective 
identification of essential proteins based on priori knowledge, 
network topology and gene expressions," Methods, vol. 67, pp. 
325-333, 2014. 

[19] X. Peng, J. Wang, J. Wang, F.-X. Wu, and Y. Pan, "Rechecking the 
centrality-lethality rule in the scope of protein subcellular 
localization interaction networks," PloS one, vol. 10, p. e0130743, 
2015. 

[20] W. Peng, J. Wang, Y. Cheng, Y. Lu, F. Wu, and Y. Pan, "UDoNC: 
an algorithm for identifying essential proteins based on protein 
domains and protein-protein interaction networks," IEEE/ACM 
Transactions on Computational Biology and Bioinformatics 
(TCBB), vol. 12, pp. 276-288, 2015. 

[21] Y.-C. Hwang, C.-C. Lin, J.-Y. Chang, H. Mori, H.-F. Juan, and H.-
C. Huang, "Predicting essential genes based on network and 
sequence analysis," Molecular BioSystems, vol. 5, pp. 1672-1678, 
2009. 

[22] K. Plaimas, R. Eils, and R. König, "Identifying essential genes in 
bacterial metabolic networks with machine learning methods," 
BMC systems biology, vol. 4, p. 56, 2010. 

[23] M. Seringhaus, A. Paccanaro, A. Borneman, M. Snyder, and M. 
Gerstein, "Predicting essential genes in fungal genomes," Genome 
research, vol. 16, pp. 1126-1135, 2006. 

[24] M. L. Acencio and N. Lemke, "Towards the prediction of essential 
genes by integration of network topology, cellular localization and 
biological process information," BMC bioinformatics, vol. 10, p. 
290, 2009. 

[25] A. M. Gustafson, E. S. Snitkin, S. C. Parker, C. DeLisi, and S. 
Kasif, "Towards the identification of essential genes using targeted 
genome sequencing and comparative analysis," Bmc Genomics, 
vol. 7, p. 265, 2006. 

[26] J. Cheng, Z. Xu, W. Wu, L. Zhao, X. Li, Y. Liu, et al., "Training set 
selection for the prediction of essential genes," PloS one, vol. 9, p. 
e86805, 2014. 

[27] J. Deng, L. Deng, S. Su, M. Zhang, X. Lin, L. Wei, et al., 
"Investigating the predictability of essential genes across distantly 
related organisms using an integrative approach," Nucleic acids 
research, vol. 39, pp. 795-807, 2010. 

[28] Y. Lu, J. Deng, J. C. Rhodes, H. Lu, and L. J. Lu, "Predicting 
essential genes for identifying potential drug targets in Aspergillus 
fumigatus," Computational biology and chemistry, vol. 50, pp. 29-
40, 2014. 

[29] J. Zhong, J. Wang, W. Peng, Z. Zhang, and Y. Pan, "Prediction of 



588

essential proteins based on gene expression programming," BMC 
genomics, vol. 14, p. S7, 2013. 

[30] H. He and E. A. Garcia, "Learning from imbalanced data," IEEE 
Transactions on Knowledge & Data Engineering, pp. 1263-1284, 
2008. 

[31] M. Li, Z. Fei, M. Zeng, F. Wu, Y. Li, Y. Pan, et al., "Automated 
ICD-9 Coding via A Deep Learning Approach," IEEE/ACM 
Transactions on Computational Biology and Bioinformatics, pp. 1-
1, 2018. 

[32] M. Li, J. Wang, X. Chen, H. Wang, and Y. Pan, "A local average 
connectivity-based method for identifying essential proteins from 
the network level," Computational biology and chemistry, vol. 35, 
pp. 143-150, 2011. 

[33] A. Grover and J. Leskovec, "node2vec: Scalable feature learning 
for networks," in Proceedings of the 22nd ACM SIGKDD 
international conference on Knowledge discovery and data mining, 
2016, pp. 855-864. 

[34] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, 
"Distributed representations of words and phrases and their 
compositionality," in Advances in neural information processing 
systems, 2013, pp. 3111-3119. 

[35] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, 
"SMOTE: synthetic minority over-sampling technique," Journal of 

artificial intelligence research, vol. 16, pp. 321-357, 2002. 
[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet 

classification with deep convolutional neural networks," in 
Advances in neural information processing systems, 2012, pp. 
1097-1105. 

[37] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, "Inception-
v4, inception-resnet and the impact of residual connections on 
learning," in AAAI, 2017, p. 12. 

[38] A. Roy and S. Todorovic, "A multi-scale cnn for affordance 
segmentation in rgb images," in European Conference on 
Computer Vision, 2016, pp. 186-201. 

[39] M. Zeng, M. Li, Z. Fei, Y. Yu, Y. Pan, and J. Wang, "Automatic 
ICD-9 coding via deep transfer learning," Neurocomputing, 2018. 

[40] H.-W. Mewes, D. Frishman, U. Güldener, G. Mannhaupt, K. 
Mayer, M. Mokrejs, et al., "MIPS: a database for genomes and 
protein sequences," Nucleic acids research, vol. 30, pp. 31-34, 
2002. 

[41] J. M. Cherry, C. Adler, C. Ball, S. A. Chervitz, S. S. Dwight, E. T. 
Hester, et al., "SGD: Saccharomyces genome database," Nucleic 
acids research, vol. 26, pp. 73-79, 1998. 

[42] B. P. Tu, A. Kudlicki, M. Rowicka, and S. L. McKnight, "Logic of 
the yeast metabolic cycle: temporal compartmentalization of 
cellular processes," Science, vol. 310, pp. 1152-1158, 2005. 


